Восстанавливаем и доводим до ума китайский фонарик. Как устроен фонарик с аккумулятором? Фонарик светодиодный аккумуляторный схема

Давно присматривался к этим микросхемам. Очень часто что-нибудь паяю. Решил взять их для творчества. Эти микросхемы куплены ещё в прошлом году. Но до применения их в деле так и не доходило. Но не так давно моя мать дала мне на починку свой фонарик, купленный в офлайне. На нём и потренировался.
В заказе было 10 микросхем, 10 и пришло.


Оплатил 17 ноября, получил 19 декабря. Пришли в стандартном пупырчатом пакетике. Внутри ещё пакетик. Шли без трека. Был удивлён, когда обнаружил их в почтовом ящике. Даже на почту идти не пришлось.


Не ожидал, что они настолько маленькие.

Микросхемы заказывал для других целей. Планами делиться не буду. Надеюсь, что у меня найдётся время воплотить их в жизнь (планы). Ну а пока немного другая история, приближенная к жизни.
Моя маман, гуляя по магазинам, увидела фонарик с хорошей скидкой. Что больше ей понравилось фонарик или скидка, история умалчивает. Этот фонарик вскоре стал и моей головной болью. Попользовалась она им не более полугода. Полгода проблемы, то одно, то другое. Я купил ей на место этого штуки три других. Но делать всё равно пришлось.


Фонарик хоть из недорогих, но имеет ряд существенных достоинств: в руке лежит удобно, достаточно яркий и кнопочка в привычном месте, алюминиевый корпус.
Ну а теперь о недостатках.
Питается фонарик от четырёх пальчиковых элементов типа ААА.


Поставил батарейки все четыре штуки. Измерил ток потребления – более 1А! Схема простая. Элементы питания, кнопка, ограничительный резистор на 1,0 Ом, светодиод. Всё последовательно. Ток ограничивается только сопротивлением 1,0 Ом и внутренним сопротивлением элементов питания.
Вот, что имеем в итоге.


Странно, что безымянный светодиод оказался живым.


Первым, что сделал – изготовил пустышку из старой батарейки.


Теперь будет питаться от 4,5В, как все китайские фонарики в основной своей массе.
И самое основное, вместо сопротивления поставлю драйвер AMC7135.
Вот стандартная схема его подключения.

Для этой микросхемы требуется минимум обвязки. Из дополнительных компонентов желательно установить пару керамических конденсаторов, что бы не было самовозбуждения микросхемы, особенно если к светодиоду идут длинные провода. В даташите есть вся необходимая информация. В фонарике длинных проводов нет, поэтому конденсаторов я в реальности не ставил, хотя в схеме обозначил. Вот моя схема, переработанная под конкретные задачи.


В данной схеме через кнопку-выключатель большой ток больше не будет течь в принципе. Через кнопку протекает только ток управления и всё. Ещё одной проблемой меньше.


Кнопку я тоже перебрал и смазал на всякий случай.

Вместо сопротивления теперь стоит микросхема с током стабилизации 360мА.


Всё собрал на место и измерил ток. Подключал и батарейки и аккумуляторы, картина не меняется. Ток стабилизации не меняется.


Слева – напряжение на светодиоде, справа – ток, через него протекающий.
Что же я добился в результате всех переделок?
1. Яркость фонаря практически не меняется при эксплуатации.
2. Разгрузил кнопку включения-выключения фонаря. Теперь через неё протекает мизерный ток. Порча контактов из-за большого тока исключена.
3. Защитил светодиод от деградации из-за большого протекающего тока (если с новыми батарейками).
Вот, в общем, и всё.
Как правильно распорядиться сведениями из моего обзора каждый решает сам. Я же могу гарантировать правдивость своих измерений. Кому что-то неясно по поводу этого обзора, задавайте вопросы. С остальным – кидайте в личку, обязательно отвечу.
На этом ВСЁ!
Удачи!

И ещё хотел бы обратить внимание на тот факт, что у моего фонарика выключатель стоит на плюсе. У многих китайских фонариков выключатель стоит на минусе, а это будет уже другая схема!

Планирую купить +60 Добавить в избранное Обзор понравился +58 +118

Для безопасности и возможности продолжать активную деятельность в темное время суток человек нуждается в искусственном освещении. Первобытные люди раздвигали темень, поджигая ветки деревьев, далее придумали факел и керосинку. И только после изобретения французским изобретателем Жорджом Лекланше в 1866 году прототипа современной батарейки, а в 1879 году Томсоном Эдисоном лампы накаливания, у Дэвида Майзелла появилась возможность запатентовать 1896 году первый электрический фонарь.

С тех пор в электрической схеме новых образцов фонарей ничего не изменялось, пока в 1923 году российский ученый Олег Владимирович Лосев не нашёл связь люминесценции в карбиде кремния и p-n-переходе, а в 1990 году ученым не удалось создать светодиод с большей светоотдачей, позволяющий заменить лампочку накаливания. Применение светодиодов вместо ламп накаливания, благодаря низкому энергопотреблению светодиодов, позволило многократно увеличить время работы фонарей при той же емкости батареек и аккумуляторов, повысить надежность фонариков и практически снять все ограничения на область их использования.

Светодиодный аккумуляторных фонарь, который Вы видите на фотоснимке попал мне в ремонт с жалобой, что купленный на днях китайский фонарик Lentel GL01 за $3, не светит, хотя индикатор заряда аккумулятора светится.


Внешний осмотр фонаря произвел положительное впечатление. Качественное литье корпуса, удобная ручка и включатель. Стержни вилки для подключения к бытовой сети для зарядки аккумулятора сделаны выдвижными, что исключает необходимость хранения сетевого шнура.

Внимание! При разборке и ремонте фонаря, если он подключен к сети следует соблюдать осторожность. Прикосновение незащищенным участком тела к неизолированным проводам и деталям может привести к поражению электрическим током.

Как разобрать светодиодный аккумуляторный фонарь Lentel GL01

Хотя фонарик подлежал гарантийному ремонту, но вспоминая свои хождения при при гарантийном ремонте отказавшего электрочайника (чайник был дорогим и в нем перегорел ТЭН , поэтому своими руками его отремонтировать не представлялось возможным), решил заняться ремонтом самостоятельно.


Разобрать фонарь оказалось легко. Достаточно повернуть на небольшой угол против часовой стрелки кольцо, фиксирующее защитное стекло и оттянуть его, затем отвинтить несколько саморезов. Оказалось кольцо фиксируется на корпусе с помощью байонетного соединения.


После снятия одной из половинок корпуса фонарика появился доступ ко всем его узлам. Слева на фотоснимке видна печатная плата со светодиодами , к которой прикреплен с помощью трех саморезов рефлектор (отражатель света). В центре расположен аккумулятор черного цвета с неизвестными параметрами, имеется только маркировка полярности выводов. Правее аккумулятора находится печатная плата зарядного устройства и индикации. Справа установлена сетевая вилка с выдвижными стержнями.


При внимательном рассмотрении светодиодов оказалось, что на излучающих поверхностях кристаллов всех светодиодов имелись черные пятна или точки. Стало ясно даже без проверки светодиодов мультиметром , что фонарик не светит по причине их перегорания.


Почерневшие области имелись также на кристаллах двух светодиодов, установленных в качестве подсветки на плате индикации зарядки аккумулятора. В светодиодных лампах и лентах обычно выходит из строя один светодиод, и работая как предохранитель, защищает остальные от перегорания. А в фонаре вышли из строя все девять светодиодов одновременно. Напряжение на аккумуляторе не могло увеличиться до величины, способной вывести светодиоды из строя. Для выяснения причины пришлось начертить электрическую принципиальную схему.

Поиск причины отказа фонаря

Электрическая схема фонаря состоит из двух функционально законченных частей. Часть схемы, расположенная левее переключателя SA1, выполняет функцию зарядного устройства. А часть схемы, изображенная справа от переключателя, обеспечивает свечение.


Работает зарядное устройство следующим образом. Напряжение от бытовой сети 220 В поступает на токоограничивающий конденсатор С1, далее на мостовой выпрямитель, собранный на диодах VD1-VD4. С выпрямителя напряжение подается на клеммы аккумулятора. Резистор R1 служит для разряда конденсатора после изъятия вилки фонарика из сети. Таким образом, исключается удар током от разряда конденсатора в случае случайного прикосновения рукой одновременно двух штырей вилки.

Светодиод HL1, включенный последовательно с токоограничивающим резистором R2 в противоположном направлении с правым верхним диодом моста, как, оказалось, светится всегда при вставленной вилке в сеть, даже если аккумулятор неисправен или отсоединен от схемы.

Переключатель режимов работы SA1 служит для подключения к аккумулятору отдельных групп светодиодов. Как видно из схемы получается, что если фонарь подключен к сети для зарядки и движок переключателя находится в положении 3 или 4, то напряжение с зарядного устройства аккумулятора попадает и на светодиоды.

Если человек включил фонарик и обнаружил, что он не работает, и, не зная, что движок выключателя обязательно необходимо установить в положение «выключено», о чем в инструкции по эксплуатации фонаря ничего не сказано, подключит фонарь к сети на зарядку, то за счет броска напряжения на выходе зарядного устройства на светодиоды попадет напряжение, значительно превышающее расчетное. Через светодиоды потечет ток, превышающий допустимый и они перегорят. При старении кислотного аккумулятора за счет сульфитации свинцовых пластин напряжение заряда аккумулятора возрастает, что тоже приводит к перегоранию светодиодов.

Еще одно схемное решение, которое удивило, это параллельное включение семи светодиодов, что недопустимо, так как вольтамперные характеристики даже светодиодов одного типа отличаются и поэтому проходящий ток через светодиоды тоже будет не одинаковым. По этой причине при выборе номинала резистора R4 из расчета протекания через светодиоды максимально допустимого тока, один из них может перегружаться и выйти из строя, а это приведет к перегрузке по току параллельно включенных светодиодов, и они тоже перегорят.

Переделка (модернизация) электрической схемы фонаря

Стало очевидным, что поломка фонаря связана с ошибками, допущенными разработчиками его электрической принципиальной схемы. Чтобы отремонтировать фонарь и исключить его повторную поломку необходимо его переделать, заменив светодиоды и внести незначительные изменения в электрическую схему.


Для того чтобы индикатор заряда аккумулятора действительно сигнализировал о его зарядке, необходимо светодиод HL1 включить последовательно с аккумулятором. Для свечения светодиода необходим ток несколько миллиампер, а выдаваемый ток зарядным устройством должен составлять около 100 мА.

Для обеспечения этих условий достаточно отсоединить HL1-R2 цепочку от схемы в местах, указанных красными крестиками и параллельно с ней установить дополнительный резистор Rd номиналом 47 Ом мощностью не менее 0,5 Вт. Ток заряда, протекая через Rd будет создавать на нем падение напряжения около 3 В, которое обеспечить необходимый ток для свечения индикатора HL1. Заодно точку соединения HL1 и Rd необходимо подключить к выводу 1 переключателя SA1. Таким простым способом будет исключена возможность подачи напряжения с зарядного устройства на светодиоды EL1-EL10 во время заряда аккумулятора.

Для выравнивания величины токов, протекающих через светодиоды EL3-EL10, необходимо исключить из схемы резистор R4 и последовательно с каждым светодиодом включить отдельный резистор номиналом 47-56 Ом.

Электрической схема после доработки

Внесенные в схему незначительные изменения повысили информативность индикатора заряда недорогого китайского светодиодного фонаря и многократно повысили его надежность. Надеюсь, что производители светодиодных фонарей после прочтения этой статьи внесут изменения в электрические схемы своих изделий.


После модернизации электрическая принципиальная схема приняла вид, как на чертеже выше. Если необходимо освещать фонариком продолжительное время и не требуется большой яркости его свечения, то можно дополнительно установить токоограничивающий резистор R5, благодаря которому время работы фонарика без подзарядки увеличится в два раза.

Ремонт светодиодного аккумуляторного фонаря

После разборки в первую очередь нужно восстановить работоспособность фонаря, а потом уже заниматься модернизацией.


Проверка светодиодов мультиметром подтвердила их неисправность. Поэтому все светодиоды пришлось выпаять и освободить от припоя отверстия для установки новых диодов.


Судя по внешнему виду, на плате были установлены ламповые светодиоды из серии HL-508H диаметром 5 мм. В наличии имелись светодиоды типа HK5H4U от линейной светодиодной лампы с близкими техническими характеристиками. Они и пригодились для ремонта фонаря. При запайке светодиодов на плату нужно не забывать соблюдать полярность, анод должен быть соединен с плюсовым выводом аккумулятора или батарейки.

После замены светодиодов печатная плата была подключена к схеме. Яркость свечения некоторых светодиодов из-за общего токоограничивающего резистора несколько отличалась от других. Для устранения этого недостатка необходимо удалить резистор R4 и заменить его семью резисторами, включив последовательно с каждым светодиодом.

Для выбора резистора, обеспечивающего оптимальный режим работы светодиода, была измерена зависимость величины тока, протекающего через светодиод, от величины последовательно включенного сопротивления при напряжении 3,6 В, равному напряжению аккумуляторной батареи фонаря.

Исходя из условий применения фонаря (в случае перебоев подачи в квартиру электроэнергии) большой яркости и дальности освещения не требовалось, поэтому резистор был выбран номиналом 56 Ом. С таким токоограничивающим резистором светодиод будет работать в легком режиме, и потребление электроэнергии будет экономным. Если от фонаря требуется выжать максимальную яркость, то следует применить резистор, как видно из таблицы, номиналом 33 Ом и сделать два режима работы фонарика, включив еще один общий токоограничивающий резистор (на схеме R5) номиналом 5,6 Ом.


Чтобы включить последовательно с каждым светодиодом резистор, необходимо предварительно подготовить печатную плату. Для этого на ней нужно перерезать по одной любой токоведущей дорожке, подходящей к каждому светодиоду и сделать дополнительные контактные площадки. Токоведущие дорожки на плате защищены слоем лака, который необходимо соскоблить лезвием ножа до меди, как на фотоснимке. Затем оголенные контактные площадки залудить припоем.

Подготавливать печатную плату для монтажа резисторов и припаивать их лучше и удобнее, если плату закрепить на штатном рефлекторе. В этом случае поверхность линз светодиодов не будет царапаться, и удобнее будет работать.

Подключение диодной платы после ремонта и модернизации к аккумулятору фонаря показало достаточную для освещения и одинаковую яркость свечения всех светодиодов.

Не успел отремонтировать предыдущий фонарь, как в ремонт попал второй, с такой же неисправностью. На корпусе фонарика информации о производителе и технических характеристиках не нашел, но судя по почерку изготовления и причине поломки, производитель тот же, китайский Lentel.

По дате на корпусе фонарика и на аккумуляторе удалось установить, что фонарю уже четыре года и со слов его хозяина фонарь работал безотказно. Очевидно, что прослужил фонарик долго благодаря предупреждающей надписи «Не включать во время зарядки!» на откидной крышке, закрывающей отсек, в котором спрятана вилка для подключения фонаря к электросети для зарядки аккумулятора.


В этой модели фонаря светодиоды включены в схему по правилам, последовательно с каждым установлен резистор номиналом 33 Ом. Величину резистора легко узнать по цветовой маркировке с помощью онлайн калькулятора . Проверка мультиметром показала, что все светодиоды неисправны, резисторы тоже оказались в обрыве.

Анализ причины отказа светодиодов показал, что за счет сульфатации пластин кислотного аккумулятора его внутреннее сопротивление увеличилось и как следствие, напряжение его зарядки возросло в несколько раз. Во время зарядки фонарик был включен, ток через светодиоды и резисторы превысил предельный, что и привело к выходу их из строя. Пришлось заменить не только светодиоды, но и все резисторы. Исходя из выше оговоренных условиях эксплуатации фонаря были для замены выбраны резисторы номиналом 47 Ом. Величину резистора для любого типа светодиода можно рассчитать с помощью онлайн калькулятора .

Переделка схемы индикации режима зарядки аккумулятора

Фонарь отремонтирован, и можно приступать к внесению изменений в схему индикации зарядки аккумулятора. Для этого необходимо перерезать дорожку на печатной плате зарядного устройства и индикации таким образом, чтобы цепочку HL1-R2 со стороны светодиода отсоединить от схемы.

Свинцово-кислотный AGM аккумулятор был доведен до глубокого разряда, и попытка зарядить его штатным зарядным устройством не привела к успеху. Пришлось аккумулятор заряжать с помощью стационарного блока питания с функцией ограничения тока нагрузки. На аккумулятор было подано напряжение 30 В, при этом он в первый момент времени потреблял ток всего несколько мА. Со временем ток начал возрастать и через несколько часов увеличился до 100 мА. После полной зарядки аккумулятор был установлен в фонарь.

Зарядка глубоко разряженных свинцово-кислотный AGM аккумуляторов в результате долгого хранения повышенным напряжением позволяет восстановить их работоспособность. Способ проверен мною на AGM аккумуляторах не один десяток раз. Новые аккумуляторы, нежелающие заряжаться от стандартных зарядных устройств, при зарядке от постоянного источника при напряжении 30 В восстанавливаются практически до первоначальной емкости.

Аккумулятор был несколько раз разряжен включением фонарика в рабочий режим и заряжен с помощью штатного зарядного устройства. Измеренный ток заряда составил 123 мА, при напряжении на выводах аккумулятора 6,9 В. К сожалению аккумулятор был изношен и его хватало для работы фонаря в течение 2 часов. То есть емкость аккумулятора составляла около 0,2 А×часа и для продолжительной работы фонаря необходима его замена.


HL1-R2 цепочка на печатной плате была удачно размещена, и понадобилось под углом перерезать всего одну токоведущую дорожку, как на фотоснимке. Ширина реза должна быть не менее 1 мм. Расчет номинала резистора и проверка на практике показала, что для стабильной работы индикатора зарядки аккумулятора необходим резистор номиналом 47 Ом мощностью не менее 0,5 Вт.

На фотоснимке представлена печатная плата с запаянным токоограничивающим резистором. После такой доработки индикатор заряда аккумулятора светится только в случае, если действительно происходит заряд аккумулятора.

Модернизация переключателя режимов работы

Для завершения работы по ремонту и модернизации фонарей необходимо выполнить перепайку проводов на выводах переключателя.

В моделях ремонтируемых фонарей для включения применен четырех позиционный переключатель движкового типа. Средний вывод на приведенной фотографии является общим. При положении движка переключателя в крайнем левом положении общий вывод подключается к левому выводу переключателя. При перемещении движка переключателя из крайнего левого положения на одну позицию вправо, общий его вывод подключается ко второму выводу и при дальнейшем перемещении движка последовательно к 4 и 5 выводам.

К среднему общему выводу (смотри фотографию выше) нужно припаять провод, идущий от положительного вывода аккумулятора. Таким образом, появится возможность подключать аккумулятор к зарядному устройству или светодиодам. К первому выводу можно припаять провод, идущий от основной платы со светодиодами, ко второму можно припаять токоограничивающий резистор R5 величиной 5,6 Ом для возможности переключения фонарика в энергосберегающий режим работы. К крайнему правому выводу припаять проводник, идущий от зарядного устройства. Таким образом будет исключена возможность включить фонарь во время зарядки аккумулятора.

Ремонт и модернизация
светодиодного аккумуляторного фонаря-прожектора «Фотон PB-0303»

Попал мне в ремонт еще один экземпляр из ряда светодиодных фонарей китайского производства под названием Светодиодный фонарь-прожектор «Фотон PB-0303». Фонарь при нажатии на кнопку включения не реагировал, попытка зарядить аккумулятор фонаря с помощью зарядного устройства к успеху не привела.


Фонарь мощный, дорогой, стоит около $20. По заявлению производителя световой поток фонаря достигает 200 метров, корпус выполнен из ударопрочного ABS-пластика, в комплекте имеется отдельное зарядное устройство и ремень для переноса на плече.


Светодиодный фонарь Фотон обладает хорошей ремонтопригодностью. Для получения доступа к электрической схеме достаточно открутить пластмассовое кольцо, удерживающее защитное стекло, вращая кольцо против часовой стрелки, если смотреть на светодиоды.


При ремонте любых электроприборов поиск неисправности всегда начинается с источника питания. Поэтому первым делом было измерено с помощью мультиметра, включенного в режим , напряжение на выводах кислотного аккумулятора. Оно составил 2,3 В, вместо 4,4 В положенных. Аккумулятор был полностью разряжен.

При подключении зарядного устройства напряжение на клеммах аккумулятора не изменялось, стало очевидным, что зарядное устройство не работает. Фонариком пользовались, пока аккумулятор полностью не разрядился, а затем он продолжительное время не эксплуатировался, что и привело к глубокой разрядке аккумулятора.


Осталось проверить исправность светодиодов и остальных элементов. Для этого был снять отражатель, для чего были откручены шесть саморезов. На печатной плате находилось всего три светодиода, ЧИП (микросхема) в виде капельки, транзистор и диод.


От платы и аккумулятора пять проводов уходило в ручку. Для того, чтобы разобраться в их подключении понадобилось ее разобрать. Для этого нужно крестовой отверткой открутить внутри фонаря два винта, которые были расположены рядом с отверстием, в которые уходили провода.


Для отсоединения ручки фонаря от его корпуса ее необходимо сдвинуть в сторону от винтов крепления. Делать это нужно аккуратно, чтобы не оторвать от платы провода.


Как оказалось в ручке небыло радиоэлектронных элементов. Два белых провода были припаяны к выводам кнопки включения/выключения фонаря, а остальные к разъему для подключения зарядного устройства. К 1 выводу разъема (нумерация условная) был припаян провод красного цвета, который вторым концом был припаян к плюсовому входу печатной платы. Ко второму контакту был припаян сине-белый проводник, который вторым концом был припаян к минусовой площадке печатной платы. К 3 выводу был припаян зеленый провод, второй конец которого был припаян к минусовому выводу аккумулятора.

Электрическая принципиальная схема

Разобравшись с проводами, спрятанными в ручке можно начертить электрическую принципиальную схему фонаря Фотон.


С отрицательного вывода аккумулятора GB1 напряжение подается на вывод 3 разъема Х1 и далее с его вывода 2 через сине-белый проводник поступает на печатную плату.

Разъем Х1 устроен таким образом, что когда штекер зарядного устройства в него не вставлен, то выводы 2 и 3 соединяются между собой. Когда штекер вставляется, то выводы 2 и 3 разъединяются. Таким образом, обеспечивается автоматическое отключение электронной части схемы от зарядного устройства, исключающей возможность случайного включения фонаря во время зарядки аккумулятора.

С положительного вывода аккумулятора GB1 напряжение подается на D1 (микросхема-чип) и эмиттер биполярного транзистора типа S8550. ЧИП выполняет только функцию триггера, позволяющего кнопкой без фиксации включать или выключать свечение светодиодов EL (⌀8 мм, цвет свечения – белый, мощность 0,5 Вт, ток потребления 100 мА, падение напряжения 3 В.). При первом нажатии на кнопку S1 с микросхемы D1 на базу транзистора Q1 подается положительное напряжение, он открывается и на светодиоды EL1-EL3 поступает питающее напряжение, фонарь включается. При повторном нажатии на кнопку S1, транзистор закрывается и фонарь выключается.

С технической точки зрения такое схемное решение безграмотно, так как повышает стоимость фонаря, снижает его надежность, и в дополнение за счет падения напряжения на переходе транзистора Q1 теряется до 20% емкости аккумулятора. Такое схемное решение оправдано при наличии возможности регулировки яркости светового луча. В данной модели вместо кнопки достаточно было поставить механический выключатель.

Вызвало удивление, что в схеме светодиоды EL1-EL3 подключены параллельно к аккумулятору как лампочки накаливания, без токоограничивающих элементов. В результате при включении через светодиоды проходит ток, величина которого ограничена только внутренним сопротивлением аккумулятора и при его полном заряде ток может превысить допустимый для светодиодов, что приведет выходу их из строя.

Проверка работоспособности электрической схемы

Для проверки исправности микросхемы, транзистора и светодиодов от внешнего источника питания с функцией ограничения тока было подано с соблюдением полярности напряжение постоянного тока 4,4 В непосредственно на выводы питания печатной платы. Величина ограничения тока была выставлена 0,5 А.

После нажатия кнопки включения светодиоды засветили. После повторного нажатия – погасли. Светодиоды и микросхема с транзистором оказались исправными. Осталось разобраться с аккумулятором и зарядным устройством.

Восстановление кислотного аккумулятора

Так как кислотный аккумулятор емкостью 1,7 А был полностью разряжен, а штатное зарядное устройство было неисправно то решил его зарядить от стационарного блока питания. При подключении аккумулятора для зарядки к блоку питания с установленным напряжением 9 В, ток заряда составил менее 1 мА. Напряжение было увеличено, до 30 В - ток возрос до 5 мА, и через час под таким напряжением составил уже 44 мА. Далее напряжение было снижено до 12 В, ток упал до 7 мА. После 12 часов заряда аккумулятора при напряжении 12 В ток поднялся до 100 мА, таким током и заряжался аккумулятор в течении 15 часов.

Температура корпуса аккумулятора была в пределах нормы, что свидетельствовало о том, что ток зарядки идет не на выделение тепла, а на накопление энергии. После заряда аккумулятора и доработки схемы, о которой речь пойдет ниже, были проведены испытания. Фонарь с восстановленным аккумулятором просветил беспрерывно 16 часов, после чего начала падать яркость луча и поэтому он был выключен.

Описанным выше способом мне приходилось неоднократно восстанавливать работоспособность глубоко разряженных малогабаритных кислотных аккумуляторов. Как показала практика, восстановлению подлежат только исправные аккумуляторы, о которых на некоторое время забыли. Кислотные аккумуляторы, которые выработали свой ресурс, восстановлению не подлежат.

Ремонт зарядного устройства

Измерение величины напряжения мультиметром на контактах выходного разъема зарядного устройства показало его отсутствие.

Судя по стикеру, наклеенному на корпус адаптера, он представлял собой блок питания, выдающий нестабилизированное постоянное напряжение величиной 12 В с максимальным током нагрузки 0,5 А. В электрической схеме небыло элементов, ограничивающих величину тока зарядки, поэтому возник вопрос, а почему в качестве зарядного устройства использовался обыкновенный блок питания?

Когда адаптер был вскрыт, то появился характерный запах горелой электропроводки, что свидетельствовало о том, что обмотка трансформатора сгорела.

Прозвонка первичной обмотки трансформатора показала, что она в обрыве. После разрезания первого слоя ленты, изолирующего первичную обмотку трансформатора, был обнаружен термопредохранитель, рассчитанный на температуру срабатывания 130°С. Проверка показала, что как первичная обмотка, так и термопредохранитель неисправны.

Ремонт адаптера был экономически не целесообразен, так как необходимо перемотать первичную обмотку трансформатора и установить новый термопредохранитель. Заменил его аналогичным, который был под рукой, на напряжение постоянного тока 9 В. Гибкий шнур с разъемом пришлось перепаять от сгоревшего адаптера.


На фотографии представлен чертеж электрической схемы сгоревшего блока питания (адаптера) светодиодного фонаря «Фотон». Адаптер для замены был собран по такой же схеме, только с выходным напряжением 9 В. Такого напряжения вполне достаточно для обеспечения требуемого тока заряда аккумулятора с напряжением 4,4 В.

Для интереса подключил фонарь к новому блоку питания и измерял ток зарядки. Величина его составила 620 мА, и это при напряжении 9 В. При напряжении 12 В ток был порядка 900 мА, значительно превышающий нагрузочную способность адаптера и рекомендуемый ток заряда аккумулятор. По этой причине от перегрева и сгорела первичная обмотка трансформатора.

Доработка электрической принципиальной схемы
светодиодного аккумуляторного фонаря «Фотон»

Для устранения схемотехнических нарушений с целью обеспечения надежной и долговременной работы в схему фонаря были внесены изменения и выполнена доработка печатной платы.


На фотографии представлена электрическая принципиальная схема переделанного светодиодного фонаря «Фотон». Синим цветом, показаны дополнительно установленные радиоэлементы. Резистор R2 ограничивает ток заряда аккумулятора до 120 мА. Для увеличения тока зарядки нужно уменьшить номинал резистора. Резисторы R3-R5 ограничивают и выравнивают ток, протекающий через светодиоды EL1-EL3 при свечении фонаря. Светодиод EL4 с последовательно включенным токоограничивающим резистором R1 установлен для индикации процесса зарядки аккумулятора, так как разработчиками конструкции фонаря об этом не позаботились.

Для установки на плате токоограничивающих резисторов печатные дорожки были перерезаны, как показано на фотографии. Ограничивающий ток заряда резистор R2 был припаян одним концом к контактной площадке, к которой до этого был припаян положительный провод, идущий от зарядного устройства, а отпаянный провод припаян ко второму выводу резистора. К этой же контактной площадке был припаян дополнительный провод (на снимке желтого цвета), предназначенный для подключения индикатора зарядки аккумулятора.


Резистор R1 и светодиод индикаторный EL4 были размещены в ручке фонаря, рядом с разъемом для подключения зарядного устройства X1. Вывод анода светодиода был припаян к выводу 1 разъема X1, а ко второму выводу, катоду светодиода токоограничивающий резистор R1. Ко второму выводу резистора был припаян провод (на фото желтого цвета), соединяющий его с выводом резистора R2, припаянного к печатной плате. Резистор R2, для простоты монтажа, можно было разместить и в ручке фонарика, но так как он при зарядке нагревается, то решил его разместить в более свободном пространстве.

При доработке схемы применены резисторы типа МЛТ мощностью 0,25 Вт, кроме R2, который рассчитан на 0,5 Вт. Светодиод EL4 подойдет любого типа и цвета свечения.


На этой фотографии показана работа индикатора зарядки во время зарядки аккумулятора. Установка индикатора позволила не только следить за процессом зарядки аккумулятора, но и контролировать наличие напряжения в сети, исправность блока питания и надежность его подключения.

Чем заменить сгоревшей ЧИП

Если вдруг ЧИП – специализированная микросхема без маркировки в светодиодном фонаре «Фотон», или аналогичном, собранном по подобной схеме, выйдет из строя, то для восстановления работоспособности фонаря ее можно успешно заменить механическим выключателем.


Для этого нужно удалить из платы микросхему D1, а вместо транзисторного ключа Q1 подключить обыкновенный механический выключатель, как показано на выше приведенной электрической схеме. Выключатель на корпусе фонаря можно установить вместо кнопки S1 или в любом другом подходящем месте.

Ремонт и переделка светодиодного фонаря
14Led Smartbuy Colorado

Перестал включаться светодиодный фонарь Smartbuy Colorado, хотя три батарейки типоразмера ААА были установлены новые.


Влагонепроницаемый корпус был выполнен из анодированного алюминиевого сплава, имел длину 12 см. Фонарик выглядел стильно и был удобен в эксплуатации.

Как проверить в светодиодном фонаре батарейки на пригодность

Ремонт любого электроприбора начинается с проверки источника питания, поэтому, не смотря на то, что в фонарь были установлены новые батарейки, ремонт следует начинать с их проверки. В фонаре Smartbuy батарейки устанавливаются в специальный контейнер, в котором с помощью перемычек соединены последовательно. Для того чтобы получить доступ к батарейкам фонарика нужно разобрать, вращая против часовой стрелки заднюю крышку.


Батарейки в контейнер необходимо устанавливать, соблюдая обозначенную на нем полярность. На контейнере тоже обозначена полярность, поэтому его нужно заводить в корпус фонаря стороной, на которой нанесен знак «+».

В первую очередь необходимо визуально проверить все контакты контейнера. Если на них имеются следы окислов, то контакты необходимо зачистить до блеска с помощью наждачной бумаги или соскоблить окисел лезвием ножа. Для исключения повторного окисления контактов их можно смазать тонким слоем любого машинного масла.

Далее нужно проверить пригодность батареек. Для этого, прикоснувшись щупами мультиметра, включенного в режим измерения постоянного напряжения , необходимо измерять напряжение на контактах контейнера. Три батарейки включены последовательно и каждая из них должна выдавать напряжение 1,5 В, следовательно напряжение на выводах контейнера должно составлять 4,5 В.

Если напряжение меньше указанного, то необходимо проверить правильность полярности батареек в контейнере и измерять напряжение каждой из них индивидуально. Возможно, села только одна из них.

Если с батарейками все в порядке, то нужно вставить, соблюдая полярность контейнер в корпус фонаря, закрутить крышку и проверить его на работоспособность. При этом надо обратить внимание на пружину в крышке, через которую передается питающее напряжение на корпус фонаря и с него прямо на светодиоды. На ее торце не должно быть следов коррозии.

Как проверить исправность выключателя

Если батарейки хорошие и контакты чистые, но светодиоды не светят, то нужно проверить выключатель.

В фонаре Smartbuy Colorado установлен кнопочный герметичный выключатель с двумя фиксированными положениями, замыкающий провод, идущий от положительного вывода контейнера батареек. При первом нажатии на кнопку выключателя его контакты замыкаются, а при повторном – размыкаются.

Так как в фонаре установлены батарейки, то проверить выключатель можно тоже с помощью мультиметра, включенного в режим вольтметра. Для этого нужно вращением против часовой стрелки, если смотреть на светодиоды, открутить его переднюю часть и отложить в сторону. Далее одним щупом мультиметра прикоснуться к корпусу фонарика, а вторым к контакту, который находится в глубине по центру пластиковой детали, показанной на фотографии.

Вольтметр должен показать напряжение 4,5 В. Если напряжение отсутствует нужно нажать кнопку выключателя. Если он исправен, то напряжение появится. В противном случае нужно ремонтировать выключатель.

Проверка исправности светодиодов

Если на предыдущих шагах поиска неисправность обнаружить не удалось, то на следующем этапе нужно проверить надежность контактов, подающих питающее напряжение на плату со светодиодами, надежность их пайки и исправность.

Печатная плата с запаянными в нее светодиодами фиксируется в головной части фонаря с помощью стального подпружиненного кольца, через которое по корпусу фонаря одновременно подается на светодиоды питающее напряжение от минусового вывода контейнера батареек. На фотографии кольцо показано со стороны, которой оно прижимает печатную плату.


Стопорное кольцо зафиксировано довольно крепко, и извлечь его удалось только с помощью приспособления, показанного на фотографии. Такой крючок можно выгнуть из стальной полоски своими руками.

После извлечения стопорного кольца печатная плата со светодиодами, которая изображена на фото, легко извлеклась из головной части фонаря. Сразу бросилось в глаза отсутствие токоограничивающих резисторов, все 14 светодиодов были включены параллельно и через выключатель непосредственно к батарейкам. Подключение светодиодов непосредственно к батарейке недопустима, так как величина протекающего через светодиоды тока ограничивается только внутренним сопротивлением батареек и может вывести светодиоды из строя. В лучшем случае сильно сократит срок их службы.

Так как в фонаре все светодиоды были включены параллельно, то проверить их с помощью мультиметра, включенного в режим измерения сопротивления не представлялось возможным. Поэтому на печатную плату было подано питающее постоянное напряжение от внешнего источника величиной 4,5 В с ограничением тока до 200 мА. Все светодиоды засветились. Стало очевидным, что неисправность фонаря заключалась в плохом контакте печатной платы с фиксирующим кольцом.

Ток потребления светодиодного фонаря

Для интереса измерял ток потребления светодиодами от батареек при включении их без токоограничительного резистора.

Ток составил более 627 мА. В фонарике установлены светодиоды типа HL-508H , рабочий ток которых не должен превышать 20 мА. 14 светодиодов включены параллельно, следовательно, суммарный ток потребления не должен превышать 280 мА. Таким образом, ток, протекающий через светодиоды, превысил номинальный более чем в два раза.

Такой форсированный режим работы светодиодов недопустим, так как ведет к перегреву кристалла, и как следствие, преждевременный выход светодиодов из строя. Дополнительным недостатком является быстрый разряд батареек. Их хватит, если раньше не перегорят светодиоды, не более чем на час работы.


Конструкция фонарика не позволяла впаять токоограничительные резисторы последовательно с каждым светодиодом, поэтому пришлось установить один общий на все светодиоды. Номинал резистора пришлось определять экспериментально. Для этого фонарик был запитан от штанных батареек и в разрыв положительного провода был включен амперметр последовательно с резистором номиналом 5,1 Ом. Ток составил около 200 мА. При установке резистора 8,2 Ом ток потребления составил 160 мА, что, как показала проверка, вполне достаточно для хорошего освещения на расстоянии не менее 5 метров. На ощупь резистор не нагревался, поэтому подойдет любой мощности.

Переделка конструкции

После проведенного исследования стало очевидным, что для надежной и долговечной работы фонаря необходимо дополнительно установить ограничивающий ток резистор и продублировать дополнительным проводником соединение печатной платы с светодиодами и фиксирующим кольцом.

Если раньше надо было, чтобы отрицательная шина печатной платы касалась корпуса фонаря, то в связи с установкой резистора, понадобилось исключить касание. Для этого с печатной платы по всей ее окружности, со стороны токоведущих дорожек с помощью надфиля был сточен угол.

Для исключения касания прижимного кольца к токоведущим дорожкам при фиксации печатной платы на нее были приклеены клеем «Момент» четыре резиновых изолятора толщиной около двух миллиметров, как показано на фотографии. Изоляторы можно изготовить из любого диэлектрического материала, например пластмассы или плотного картона.

Резистор был заранее припаян к прижимному кольцу, а к крайней дорожке печатной платы припаян отрезок провода. На проводник была надета изолирующая трубка, и затем провод припаян ко второму выводу резистора.



После простой модернизации фонаря своими руками он стал стабильно включаться и световой луч хорошо освещать предметы на расстоянии более восьми метров. Дополнительно срок службы батареек увеличился более чем в три раза, и многократно повысилась надежность работы светодиодов.

Анализ причин отказов отремонтированных китайских светодиодных фонарей показал, что все они вышли из строя из-за безграмотно разработанных электрических схем. Осталось только выяснить, сделано это намеренно, чтобы сэкономить на комплектующих и сократить срок эксплуатации фонарей (чтобы больше покупали новые), или в результате безграмотности разработчиков. Я склоняюсь к первому предположению.

Ремонт светодиодного фонаря RED 110

Попал в ремонт фонарик со встроенным кислотным аккумулятором китайского производителя торговой марки RED. В фонаре имелось два излучателя: – с лучом в виде узкого пучка и излучающий рассеянный свет.


На фотографии представлен внешний вид фонаря RED 110. Фонарь мне сразу понравился. Удобная форма корпуса, два режима работы, петля для подвески на шею, выдвигающаяся вилка подключения к сети для зарядки. В фонаре секция светодиодов рассеянного света светила, а узкого пучка – нет.


Для ремонта сначала было откручено кольцо черного цвета, фиксирующее рефлектор, а затем выкручен один саморез в зоне петли. Корпус легко разделился на две половинки. Все детали были закреплены на саморезах и легко снимались.

Схема зарядного устройства была выполнена по классической схеме . Из сети через токоограничивающий конденсатор емкостью 1 мкф напряжение подавалось на выпрямительный мост из четырех диодов и далее на выводы аккумулятора. Напряжение с аккумулятора на светодиод узкого луча подавалось через токоограничивающий резистор 460 Ом.

Все детали были смонтированы на односторонней печатной плате. Провода были припаяны непосредственно к контактным площадкам. Внешний вид печатной платы представлен на фотографии.


10 светодиодов бокового света были соединены параллельно. Напряжение питания на них подавалось через общий токоограничивающий резистор 3R3 (3,3 Ом), хотя по правилам для каждого светодиода нужно устанавливать отдельный резистор.

При внешнем осмотре светодиода узкого пучка дефектов обнаружено не было. При подаче питания через включатель фонарика с аккумулятора напряжение на выводах светодиода присутствовало, и он нагревался. Стало очевидным, что кристалл пробит, и это подтвердила прозвонка мультиметром . Сопротивление составило при любом подключении щупов к выводам светодиода 46 Ом. Светодиод был неисправен и требовалась его замена.

Для удобства работы от платы светодиода был отпаяны провода . После освобождения выводов светодиода от припоя оказалось, что светодиод намертво держится всей плоскостью обратной стороны на печатной плате. Для его отделения пришлось закрепить плату в настольных висках. Далее острый конец ножа установить в место соединения светодиода с платой и легонько ударить по ручке ножа молотком. Светодиод отскочил.

Маркировка на корпусе светодиода, как обычно, отсутствовала. Поэтому необходимо было определить его параметры и подобрать подходящий для замены. По габаритным размерам светодиода, напряжению аккумулятора и величине токоограничивающего резистора было определено, что для замены подойдет светодиод мощностью 1 Вт (ток 350 мА, падение напряжения 3 В). Из «Справочной таблицы параметров популярных SMD светодиодов» для ремонта был выбран светодиод LED6000Am1W-A120 белого свечения.

Печатная плата, на которой установлен светодиод выполнена из алюминия и одновременно служит для отвода тепла от светодиода. Поэтому при установке его необходимо обеспечить хороший тепловой контакт за счет плотного прилегания задней плоскости светодиода к печатной плате. Для этого перед запайкой на места контакта поверхностей была нанесена термопаста , которая применяется при установке радиатора на процессор компьютера.

Для того, чтобы обеспечить плотное прилегание плоскости светодиода к плате необходимо сначала положить его на плоскость и немного отогнуть вверх выводы, чтобы они отступали от плоскости на 0,5 мм. Далее выводы залудить припоем, нанести термопасту и установить светодиод на плату. Далее прижать его к плате (удобно это сделать отверткой с вынутой битой) и прогреть выводы паяльником. Далее убрать отвертку, ножом прижать в месте изгиба вывода его к плате и прогреть паяльником. После затвердевания припоя нож убрать. За счет пружинных свойств выводов светодиод будет плотно прижат к плате.

При установке светодиода необходимо соблюдать полярность. Правда в этом случае, если будет допущена ошибка, то можно будет поменять местами подающие напряжение провода. Светодиод припаян и можно проверить его работу и измерять потребляемый ток и падение напряжения.

Ток протекающий через светодиод составил 250 мА, падение напряжения 3,2 В. Отсюда потребляемая мощность (нужно умножить ток на напряжение) составила 0,8 Вт. Можно было увеличить рабочий ток светодиода уменьшив сопротивление 460 Ом, но я этого делать не стал, так как яркость свечения была достаточной. Зато светодиод будет работать в более легком режиме, меньше нагреваться и увеличится время работы фонарика от одной зарядки.


Проверка нагрева светодиода проработавшего в течении часа показала эффективный отвод тепла. Он нагрелся до температуры не более 45°С. Ходовые испытания показали достаточную дальность освещения в темноте, более 30 метров.

Замена кислотного аккумулятора в светодиодном фонаре

Вышедший из строя в светодиодном фонаре кислотный аккумулятор можно заменить как аналогичным кислотным, так и литий-ионным (Li-ion) или никель-металгидридными (Ni-MH) аккумуляторами типоразмера АА или ААА.

В ремонтируемых китайских фонарях были установлены свинцово-кислотные AGM аккумуляторы разных габаритных размеров без маркировки напряжением 3,6 В. По расчету емкость этих аккумуляторов составляет от 1,2 до 2 А×часов.

В продаже можно найти аналогичный кислотный аккумулятор российского производителя для ИБП 4V 1Ah Delta DT 401, который имеет напряжение на выходе 4 В при емкости 1 А×часа, стоимостью пару долларов. Для замены достаточно просто, соблюдая полярность, перепаять два провода.

Широкому использованию светодиодов препятствуют их технические характеристики, в частности, нелинейная вольтамперная характеристика и "неудобные" напряжения питания. Потому для светодиодов используют разного рода преобразователи напряжения, работающие на базе трансформаторов либо индуктивных накопителей энергии. Предлагаемая конструкция светодиодного фонарика питается от двух батареек типа АА, в качестве светоизлучающего устройства был использован сверхяркий светодиод DFL-OSPW5111Р белоснежного свечения с яркостью 30 Кд при потребляемом токе всего 80 мА

Схема фонарика достаточно проста, т.к не содержит микроконтроллеров, не требует настройки, и должна начать работать сразу после сборки и подачи питания. Алгоритм работы следующий. При подсоединении аккумуляторной батареи G1, цепь C6R8 осуществляет сброс счетчика DD1. Кнопка SB1 подсоединена к счётному входу DD1 через цепь C8-R11-R12 (антидребезг). Нажимая на SB1 вызываем срабатывание DD1, на выводе OUT1 устанавливается логическая единица, включается светодиодный драйвер DA2, его выходной ток около 350 мА. При повторном нажатии на SB1, на OUT2 "лог. 1", и через VD3 счётчик сбрасывается, драйвер DA2 отключается. На DA1 построено классическое зарядное устройство, сопротивлением R1 выбираем нужный зарядный ток. В данной конструкции ток ограничен уровнем в 500 мА. При зарядке сбрасывается счётчик DD1 через R10-VD4. Т.е, работа устройства временно блокируется пока идет зарядка аккумулятора. Микросборка DA3 и транзистор VT1 FS8205 образуют схему защиты от разряда литий-ионного аккумулятора. Питание на DA3 следует через VD1 и VD2. Это нужно для поднятия уровня срабатывания защиты до 3 вольт.

Печатную плату фонарика и этапы его сборки в фотографиях можно скачать по ссылке выше:

Эта конструкция позволяет подключить от трех до десяти сверх ярких светодиодов с током до 750 мА.

Помните, что напряжение питания платы не должно быть выше питания используемых светодиодов. Для снижения потребляемой мощности и увеличенного КПД в конструкцию добавлен n-канальный , имеющий очень низкое сопротивление. Для управления силовым транзистором, в схеме имеется блок управления на биполярном транзисторе, резисторе R1 и диоде VD1.


В момент появления управляющего сигнала биполярный транзистор закрыт, а через диод VD1 происходит заряд затвора MOSFET. По окончанию импульса, через открытый транзистор произойдет разряд затвора VT2. Такой режим работы гарантирует мгновенное открытие и закрытие MOSFET, и тем самым увеличивает КПД преобразователя.

В основе конструкции лежит микросхема LMC555. В данном случае она работает как генератор прямоугольных импульсов. В отличие от схемы его стандартного использования в данном случае в схеме фонарика был добавлен диод Шоттки BAT85. Благодаря его использованиюдва различных временных периода могут регулироваться независимо друг от друга. Продолжительность времени, при котором на выходе будет высокий логический уровень, задается сопротивлением R1 и емкостью С2, а продолжительность времени, при котором на выходе будет низкий логический уровень, зависит от резистора R2, потенциометра P1 и конденсатора С2. Коэффициент заполнения можно менять в диапазоне от 30% до 96%. Тем самым осуществляется диммирование, то есть изменение яркости свечения трех мощных источников света, которые обеспечивают подсветку. Схема LMC555 является КМОП-версией популярного и широко известного в обществе радиолюбителей таймера LM555, но она потребляет гораздо меньше тока, поэтому желательно использовать именноь ее. Дополнительный драйвер на полевом транзисторе BS170 (T1) применяется для управления нагрузкой на выхорде схемы фонарика. Этот полевик может работать с током нагрузки до 500 мА. Ниже представлена схема фонарика с мини USB.


К мобильному телефону или планшету подсветка подключается с помощью интерфейса Mini USB. На практике, правда оказалось, что не все цифровые гаджеты могут выдавать 500 мА, и это необходимо учитывать при подключении фонарика к устройству.

Отличительной особенностью предлагаемой радиолюбительской конструкции является то, что в качестве источника питания применен шаговый двигатель от дисковода гибких дисков. Генерирующий поток свободных электронов за счет маятникового движения ротора. Поэтому им достаточно комфортно пользоваться. Напряжение на светодиодах зависит только от интенсивности вращения якоря шагового электродвигателя.

Грамотно сделанное освещение парка или дачного участка способно превратить безжизненное унылое пространство в фантастическую сказку. Садовый светодиодный светильник схема которого рассмотрена ниже используется для организации садово-паркового освещения и подсветки. Светильники при этом выполняют двойную функцию: они являются источником искусственного освещение и предметами декора вашего сада

Сделать светодиодный светильник своими руками достаточно просто, немного свободного времени, кое-каких компонентов для схемы и вашего желания. Самый оптимальный вариант для начинающего радиолюбителя переделка уже имеющегося светильника

Многие купившие недорогой китайский фонарик на сверхярком светодиоде, жалуются, что аккумуляторы в них дохнут очень быстро. На самом деле это действитетельно так, потому, что в них как правило отсутствует контроллер заряда и разряда, а .


Схему, прошивку, проект в Proteus и программу можно скачать по ссылке выше с облака.

Простой светодиодный фонарик своими руками

При этом решении получилось уменьшать габариты всей системы, в первую очередность, магнитопровода трансформатора преобразователя.

Трансформатор Т1 намотан на кольцевом магнитопроводе К10x6x3 из феррита 2000НМ. Первичную и вторичную обмотки трансформатора наматывают сразу (т. е. в 4 провода).

После намотки трансформатора выводы обмоток объединяют по схеме. Резистор R1 - МЛТ, транзисторы КТ529А, могут быть заменены КТ530А, но при этом необходимо сменить полярность на батарейках.

Светодиод помещают в корпус фонарика вместо лампы накаливания, но так чтоб он выступал на 0,5... 1 мм из гнезда для ее установки.


Главное достоинство этой схемы это малое энергопотребление и наличие сигнального режима благодаря ритмическому миганию светодиодов. Которую можно регулировать в большом диапазоне.

Несмотря на малое питающее напряжение всего 7-15V светодиодный прожектор дает яркость не хуже яркости автомобильных фар. Принципиальная схема прожектора выполнена на преобразователе DC-DC на микросхеме D2 LM2575-5V.

, (смотри справочные данные) поддерживает стабилизированное напряжение 5V. Им и питается батарея, из 22-х светодиодов. Светодиоды включены попарно последовательно, на каждой паре падает по 4,2V. Остальные 0,8V гасятся на резисторах R3-R13. Накачка происходит на индуктивности L1, диод VD1 служит выпрямителем, а конденсатор С5 работает интегратором.

В микросхеме LM2575 по выводу 5 есть режим блокировки. При подаче на него логической единицы, микросхема LM2575 выключается, и прожектор тухнет. Если тумблер S1 перекинуть в положении «Мигать», то на вывод 5 D2 будут поступать импульсы от мультивибратора на микросхеме D1 К561ЛЕ5, частоту которых можно регулировать переменным резистором R2. Дроссель L1 намотан на ферритовом кольце 2000НМ диаметром 23мм. Он содержит 60 витков провода ПЭВ 0,61.

Светодиоды можно использовать практически любые сверхяркие или суперяркие, но с напряжением падения не более 2,4V. Светодиоды с большим напряжением падения также можно использовать, но включать их нужно по одному.

В данной схеме светодиодного фонаря предусмотрена функция автоматического отключения которая защищает аккумуляторную батарею от глубокого разряда, что очень актуально для Ni-MH или Ni-Cd аккумуляторов типоразмера АА, ААА а для туризма и кемпинга именно этот размер является ключевым, т.к вместо него можно использовать и обычные самые распространенные в России батарейки. Питание в этой схеме рассчитано от семи батареек или аккумуляторов типа АА, поэтому для питания светодиодов мы использовали понижающий преобразователь напряжения.

В качестве образца возьмём аккумуляторный фонарик фирмы "ДиК", «Люкс» или «Космос» (см. на фото). Этот карманный фонарик, малогабаритный, удобный в руке и с достаточно большим рефлектором - 55,8 мм в диаметре, светодиодная матрица которого имеет 5 белых светодиодов, что обеспечивает хорошее и большое пятно освещения.

Кроме того форма фонарика всем знакома, а многим ещё с детства, одним словом - бренд. Зарядное устройство находится внутри самого фонарика, стоит только снять сзади крышку и воткнуть его в розетку. Но, ни что не стоит на месте и эта конструкция фонарика тоже претерпела изменений, особенно его внутренняя начинка. Последняя модель на данный момент - ДИК АН 0-005 (или ДиК-5 ЕВРО).

Более ранние версии - это ДИК АН 0-002 и ДИК АН 0-003 отличаются тем, что в них стояли дисковые аккумуляторы (3 шт), Ni-Cd серии Д-025 и Д-026, ёмкостью 250 мА/часов, или в модели АН 0-003 - сборка уже более новых аккумуляторов Д-026Д с большей емкостью, 320 мА/ч и лампочки накаливания на 3,5 или 2,5 В, с током потребления 150 и 260 мА соответственно. Светодиод, для сравнения, потребляет около 10 мА и даже матрица из 5 штук - это 50 мА.

Конечно, при таких характеристиках фонарик не мог долго светить, его максимум хватало на 1 час, особенно первые модели.

Что же такого есть в последней модели фонарика ДИК АН 0-005?

Ну во-первых - светодиодная матрица из 5 светодиодов, в отличие от 3-х или лампочки накаливания, что даёт значительно больше света при меньшем токе потребления, а второе - в фонарике стоит всего лишь 1 пальчиковый современный Ni-MH аккумулятор на 1,2-1,5 В и ёмкостью от 1000 до 2700 мА/ч.

Некоторые спросят, а как же пальчиковый аккумулятор на 1,2 В может «зажечь» светодиоды, ведь чтобы они ярко светили надо примерно 3,5 В? По этой причине в более ранних моделях ставили последовательно 3 аккумулятора и получали 3,6 В.

Но, тут уже не знаю кто первый придумал, китайцы или кто-то другой, сделать преобразователь (умножитель) напряжения с 1,2 В до 3,5 В. Схема простая, в китайских фонариках это всего лишь 2 детали - резистор и радиодеталь похожая на транзистор с маркировкой - 8122 или 8116, или SS510, или SK5B. SS510 - это диод Шоттки.

Светит такой фонарик хорошо, ярко, и что не маловажно - долго, а циклов заряд-разряд не 150, как в предыдущих моделях, а на много больше, что увеличивает срок службы в разы. Но!! Чтобы светодиодный фонарик служил долго, надо вставлять его в розетку с 220 В в выключенном состоянии! Если этого правила не придерживаться то при зарядке можно легко сжечь диод Шоттки (SS510), а часто заодно и светодиоды.

Мне однажды пришлось ремонтировать фонарик ДИК АН 0-005. Не знаю точно, что послужило причиной выхода его из строя, но предполагаю, что воткнули его в розетку и забыли на несколько суток, хотя по паспорту заряжать надо не более 20 часов. Короче - вышел из строя аккумулятор, потёк, и сгорело 3 светодиода из 5, плюс преобразователь (диод) тоже перестал работать.

Аккумулятор пальчиковый на 2700 мА/ч у меня был, остался от старого фотоаппарата, светодиоды тоже, а вот найти деталь - SS510 (диод Шоттки), оказалось проблематично. Этот светодиодный фонарик скорее всего китайского происхождения и такую деталь наверное можно купить только там. И тогда решил слепить преобразователь напряжения из тех деталей что есть, т.е. из отечественных: транзистора КТ315 или КТ815, в/ч трансформатора и других (см. схему).

Схема не нова, она давно уже существует, я её только использовал в этом фонарике. Правда, вместо 2 радиодеталей, как у китайцев, у меня получилось 3, зато дармовые.

Электрическая схема, как видите, элементарная, самая сложная вещь - это намотать ВЧ-трансформатор на ферритовом кольце. Кольцо можно использовать со старого импульсного блока питания, от компьютера, или от энергосберегающей нерабочей лампочки (см. фото).

Внешний диаметр ферритового кольца 10-15 мм, толщина примерно 3-4 мм. Надо намотать 2 обмотки по 30 витков проводом 0,2-0,3 мм, т. е. мотаем сначала 30 витков, затем делаем отвод от середины и ещё 30. Если ферритовое кольцо берёте с платы люминесцентной лампочки - лучше использовать 2 штуки, сложить их вместе. На одном кольце тоже схема будет работать, но свечение будет слабее.

Сравнивал 2 фонарика на свечение, оригинальный (китайский) и переделанный по выше указанной схеме - различий в яркости почти не увидел. Преобразователь, кстати, можно вставить не только в аккумуляторный фонарик, а и в обычный, который работает от батареек, тогда можно будет запитывать его всего от 1 батарейки 1,5 В.

Схема зарядного устройства фонарика изменений почти не претерпела, за исключением номиналов некоторых деталей. Ток зарядки примерно 25 мА. При зарядке, фонарь надо отключать! И не клацать выключателем во время зарядки, поскольку напряжение зарядки более чем в 2 раза выше напряжения аккумулятора, и если оно пойдёт на преобразователь и усилится - светодиоды частично или полностью придётся менять...

В принципе, по выше указанной схеме, светодиодный фонарик легко можно сделать и своими руками, вмонтировав его, например, в корпус какого-нибудь старого, даже самого древнего фонарика, а можно сделать корпус и самому.

А чтобы не менять структуру выключателя старого фонарика, где использовалась маленькая лампочка накаливания на 2,5-3,5 В нужно разбить уже сгоревшую лампочку и к цоколю, вместо стеклянной колбы, припаять 3-4 белых светодиода.

А также, для зарядки, вмонтировать разъём под сетевой шнур, от старого принтера или приёмника. Но, хочу заострить ваше внимание, если корпус фонарика металлический - зарядное устройство туда не монтируйте, а сделайте его выносным, т.е. отдельно. Совсем не сложно вынуть пальчиковый аккумулятор из фонарика и вставить его в ЗУ. И не забывайте всё хорошо изолировать! Особенно в тех местах, где присутствует напряжение 220 В.

Думаю, после переделки старый фонарик прослужит вам ещё не один год...

Блокинг – генератор представляет собой генератор кратковременных импульсов повторяющихся через довольно большие промежутки времени.

Одним из достоинств блокинг - генераторов являются сравнительная простота, возможность подключения нагрузки через трансформатор, высокий КПД, подключения достаточно мощной нагрузки.

Блокинг-генераторы очень часто используются в радиолюбительских схемах. Но мы будем запускать от этого генератора светодиод.

Очень часто в походе, на рыбалке или охоте нужен фонарик. Но не всегда под рукой есть аккумулятор или батарейки 3В. Данная схема может запустить светодиод на полную мощность от почти разряженной батарейки.

Немного о схеме. Детали: транзистор можно использовать любой (n-p-n или p-n-p) в моей схеме КТ315Г.

Резистор нужно подбирать, но об этом потом.

Кольцо ферритовое не очень большое.

И диод высокочастотный с низким падением напряжения.

Итак, убирался я в ящике в столе и нашел старый фонарик с лампочкой накаливания, конечно же, сгоревшей, а недавно видел схему этого генератора.

И решил я спаять схему и засунуть в фонарик.

Ну-с приступим:

Для начала соберем по этой схеме.

Берем ферритовое кольцо (я вытащил из балласта люминесцентной лампы) И мотаем 10 витков проводом 0,5-0,3мм (можно и тоньше, но не удобно будет). Намотали, делаем петельку, ну или отвод, и мотаем еще 10 витков.

Теперь берем транзистор КТ315, светодиод и наш трансформатор. Собираем по схеме (см. выше). Я поставил еще конденсатор параллельно с диодом, так ярче светилось.

Вот и собрали. Если светодиод не горит, поменяете полярность батарейки. Все равно не горит, проверьте правильность подключения светодиода и транзистора. Если все правильно и все равно не горит, значит не правильно намотан трансформатор. Если честно у меня тоже схема завелась далеко не с первого раза.

Теперь дополняем схему остальными деталями.

Поставив диод VD1 и конденсатор С1 светодиод засветится ярче.

Последний этап - подборка резистора. Вместо постоянного резистора ставим переменный на 1,5кОма. И начинаем крутить. Нужно найти то место где светодиод светит ярче, при этом надо найти место где если увеличить сопротивление хоть чуть-чуть светодиод гаснет. В моем случае это 471Ом.

Ну ладно, теперь ближе к делу))

Разбираем фонарик

Вырезаем из одностороннего тонкого стеклотекстолита кружок под размер трубки фонарика.

Теперь идем и ищем детали нужных номиналов размером несколько миллиметров. Транзистор КТ315

Теперь размечаем плату и разрезаем фольгу канцелярским ножом.

Лудим плату

Исправляем косяки, если таковы имеются.

Теперь чтобы паять плату нам нужно специальное жало, если нет - не беда. Берем проволоку 1-1,5мм толщиной. Тщательно зачищаем.

Теперь наматываем на имеющийся паяльник. Конец проволоки можно заострить и залудить.

Ну-с приступим припаивать детали.

Можно воспользоваться лупой.

Ну, вроде все припаяли, кроме конденсатора, светодиода и трансформатора.

Теперь тест-запуск. Все эти детали (не припаивая) прицепляем на «сопли»

Ура!! Получилось. Теперь можно не опасаясь все детали припаивать нормально

Мне вдруг стало интересно, какое же напряжение на выходе, я измерил